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The objective of the study is to evaluate the potential of a data assimilation system for real-time flash
flood forecasting over small watersheds by updating model states. To this end, the Ensemble Square-
Root-Filter (EnSRF) based on the Ensemble Kalman Filter (EnKF) technique was coupled to a widely used
conceptual rainfall-runoff model called HyMOD. Two small watersheds susceptible to flash flooding from
America and China were selected in this study. The modeling and observational errors were considered in
the framework of data assimilation, followed by an ensemble size sensitivity experiment. Once the
appropriate model error and ensemble size was determined, a simulation study focused on the perfor-
mance of a data assimilation system, based on the correlation between streamflow observation and
model states, was conducted. The EnSRF method was implemented within HyMOD and results for flash
flood forecasting were analyzed, where the calibrated streamflow simulation without state updating was
treated as the benchmark or nature run. Results for twenty-four flash-flood events in total from the two
watersheds indicated that the data assimilation approach effectively improved the predictions of peak
flows and the hydrographs in general. This study demonstrated the benefit and efficiency of implement-
ing data assimilation into a hydrological model to improve flash flood forecasting over small, instru-
mented basins with potential application to real-time alert systems.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Flooding is one of the most devastating natural hazards across
the world, causing tremendous economic losses and casualties.
Flood forecasting is one of the crucial issues in hydrology, as well
as a challenging problem in operational practice, especially over
ungauged small river basins [1]. Two factors affecting flood fore-
casting are quantitative precipitation estimation and forecasting
and streamflow simulation by rainfall–runoff models [2]. A great
number of quantitative precipitation estimation methods, numer-
ical weather forecast systems, and hydrologic models have been
developed for the purpose of improving streamflow simulation
and ultimately, flood forecasting.

However, uncertainties in the forcing data, observed system re-
sponse, and imperfect model structures are inevitably involved in
flood forecasting [3,4]. First, hydrologic models contain errors
due to the simplification and parameterization of real world pro-
cesses, despite optimizing parameter settings using automatic or
manual calibration methods. Secondly, the difficulty in flood fore-
casting is largely due to measurement errors of physical quantities,
particularly precipitation and streamflow. For flash flood cases, the
precipitation forcing data is arguably among the most important
factors. Quantitative precipitation estimation and forecast prod-
ucts are subject to the most error during extreme rainfall events
over small-sized watersheds. Another limitation in flash flood fore-
casting is the sensitivity of rainfall–runoff models to initial condi-
tions given short duration, intense storms because of nonlinear
threshold effects and runoff responses. In this regard, data assimi-
lation techniques can update estimated model states by jointly tak-
ing into account model errors, forcing data uncertainties and
output uncertainties, hence to improve streamflow forecasting [5].

Among a range of data assimilation techniques, the Kalman fil-
ter (KF) developed by Kalman [6] is the most well-known. The tra-
ditional KF method was restricted to linear systems, and was later
extended to nonlinear models as an extended Kalman Filter (EKF).
EKF method was introduced to hydrologic models for flood fore-
casting in the 1980s (e.g. [7–9]), but the computational demand

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.advwatres.2013.06.010&domain=pdf
http://dx.doi.org/10.1016/j.advwatres.2013.06.010
mailto:yangdw@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.advwatres.2013.06.010
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


Table 1
Characteristics of Cobb Creek watershed and Chuzhou watershed.

Cobb Creek watershed Chuzhou watershed [29]

(Latitude, longitude) (35.29� N, 98.64� W) (26.35� N, 114.13� E)
Basin area 342 km2 289 km2

Annual precipitation 820 mm [26] 1550 mm
Predominant land use Cropland/grassland [27] Forest
Predominant soil type Silt loam/loam [28] Loam
Elevation range 379–564 m a.s.l. 379–2090 m a.s.l.
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resulting from the error covariance integration and the instability
in cases of strong model non-linearity limited the applicability of
the EKF [10,11]. Ensemble Kalman filter (EnKF) was thus developed
to circumvent these problems by performing a Monte Carlo ensem-
ble of model runs instead of reforming the model into state-space
form [12]. A series of comparison studies showed the EnKF method
had the advantage of easy implementation, flexibility in covariance
modeling, robustness and computational efficiency (e.g. [13–15]).
The EnKF has great potential in flood forecasting and thus has
emerged as the most popular choice for hydrologic model assimi-
lation. Whitaker and Hamill [16] proposed the Ensemble Square-
Root-Filter (EnSRF), which is a variant of EnKF that does not require
the observation to be perturbed as the standard implementation of
EnKF. The EnSRF algorithm has been demonstrated to be as fast as
the EnKF, and more accurate than EnKF for a given ensemble size.

One research theme of data assimilation is diagnosing the
uncertainties present in the model itself and observations, and
then transferring this knowledge to improve the understanding
and representation of model concepts describing the physical
hydrologic system. Vrugt et al. [17] presented a simultaneous opti-
mization and data assimilation approach to better treat parametric
uncertainty by integrating all sources of uncertainties using the
EnKF method. Input, output and model structural errors are distin-
guished and quantified during the model calibration process. An-
other important use for data assimilation is predicting future
conditions by incorporating knowledge of current system states.

Recently, the potential of data assimilation in streamflow fore-
casting has motivated an increasing number of studies. For exam-
ple, Aubert et al. [18] studied the possibility for improving
streamflow forecasting by coupling soil moisture observations with
the routing function of a hydrologic model using the EKF method.
Weerts and El Serafy [15] tested the applicability of EnKF for the
correction of the model inputs for flood forecasting purposes. Kom-
ma et al. [19] implemented the EnKF method for flood forecasting in
Austria. Thirel et al. [20] described an assimilation system in France
that utilized past discharges in order to obtain a better initial state.
Very few operational applications of such assimilation systems ex-
ist for real-time flash-flood forecasting over small watersheds. Un-
like the situation over large scale or meso-scale basins, flash floods
are usually caused by intense, local storms. First, the odds of there
being an observation of streamflow are slimmer compared to larger
rivers. Second, the quickness of the hydrologic response to rainfall
limits the effectiveness to obtain observations of models states
and incorporate them in future predictions.

The objective of the study is to examine the potential of a data
assimilation system for real-time flash flood forecasting over small
watersheds through the applicability of the EnSRF method. A rela-
tively simple but robust conceptual rainfall–runoff Hydrologic
MODel called HyMOD [21] was used because it has shown its effec-
tiveness in flood forecasting in an operational context, and is espe-
cially well adapted to real time forecasting (e.g. [22,23]). In the
following sections, we describe the study watersheds, data, Hy-
MOD structure, EnSRF method, implementation of the proposed
data assimilation methodology, evaluation criteria, and model cal-
ibration. Then we analyzed the modeling and observation uncer-
tainties and the determined the proper ensemble size, which is a
key factor in the EnSRF implementation. The model states-updat-
ing experiment was followed by a case study of the application
over two small watersheds in America and China.

2. Methodology

2.1. Study watersheds and data

Two small watersheds, Cobb Creek watershed and Chuzhou wa-
tershed located in America and China respectively were used in the
study to evaluate the usefulness of data assimilation for flash-flood
forecasting. Cobb Creek watershed, the largest sub-basin of Ft.
Cobb watershed (see [24, Fig. 1]), is located in southwestern Okla-
homa in Caddo, Washita and Custer counties. Chuzhou watershed
is one of the sub-basins of Suichuanjiang river basin, which is lo-
cated in the Yangtze River Basin of Southern China (see [25,
Fig. 3]). The characteristics of the two watersheds are provided be-
low in Table 1.

Both watersheds share a similar basin area and temperate cli-
mate, and the rainy seasons are during the warm season. Typically,
the wettest and warmest month of Cobb Creek watershed is May,
which has 150 mm of precipitation, while in Chuzhou watershed,
70% of the annual rainfall occurs from Apr to Sep. However,
remarkable differences are shown with the two watersheds, such
as annual precipitation, land uses, and hill slope. These differences
may cause variation in flood hydrographs between the two water-
sheds, which can provide more insights in the forthcoming flood-
forecasting analysis.

Available data in the Cobb Creek watershed include precipita-
tion data from USDA Agricultural Research Service (ARS), discharge
from a USGS stream gauge, meteorology data from Micronet and
Mesonet stations. Hourly precipitation data is available from fif-
teen stations located within or around the Cobb Creek watershed
from May 2005 operated by the USDA ARS Grazing lands Research
Laboratory. River discharge is measured by the USGS streamflow
gauge (07305800, Cobb Creek near Eakly) at 15-min intervals.

Data used in Chuzhou watershed include hourly precipitation
interpolated from 7 rain gauges within the watershed, daily pan
evaporation data from a nearby meteorological station approxi-
mately 60 km away from the center of the watershed, hourly dis-
charge at the outlet of the watershed. Hourly data from 16 large
flood events occurring from 1981 to 2002 were used in this study.
Of these events, 4 are used for calibration and the remaining 12 are
used for validation.

2.2. Hydrologic model

To implement and evaluate the data assimilation approach in
rainfall–runoff process simulation and forecast, the conceptual
Hydrologic MODel (HyMOD) described by Boyle [21] was used in
the study. HyMOD is a rainfall excess model using a nonlinear tank
connected with a series of linear tanks (three identical quick-flow
tanks) in parallel representing the surface flow to a slow-flow tank
representing groundwater flow. Five parameters in the HyMOD sys-
tem are Cmax: the maximum storage capacity within the watershed,
bexp: the degree of spatial variability of the soil moisture capacity
within the watershed, a: a factor for partitioning the flow between
two series of tanks, Rq and Rs: the residence time parameters of
quick-flow and slow-flow tanks, respectively. The model has five
state variables, S: storage in the nonlinear tank representing the soil
moisture content in the watershed, x1, x2 and x3: the quick-flow
tank storages representing the temporary (short-time) detentions,
x4: the slow-flow tank storage (subsurface storage). Additional de-
tails about the model structure are available in Boyle [21] and
Wagener [30]. Primarily attributed to the fast computation speed



H. Chen et al. / Advances in Water Resources 59 (2013) 209–220 211
and simple model structure, HyMOD has been used in previous re-
search studies of data assimilation such as in Moradkhani [22] and
Blasone [31].

2.3. Ensemble Square-Root-Filter

The data assimilation approach used in this study was based on
the ensemble Kalman filter (EnKF) concept introduced by Evensen
[12]. The basic idea of EnKF incorporates an ensemble of forecasts
to estimate background error covariance, which is a Monte Carlo
approximation to the traditional Kalman filter [32]. The update
equation of EnKF is

xa
i ¼ xb

i þ Kðyi �Hxb
i Þ; i ¼ 1 . . . m ð1aÞ

where

K ¼ PbHT ðHPbHT þ RÞ
�1

ð1bÞ

is the Kalman gain. In Eq. (1), xb
i is the background vector of all mod-

el states for each ensemble member before the update (n � 1
dimension), xa

i is the analysis after the update (n � 1 dimension),
yi is the vector of the observations (p � 1 dimension), Pb is the back-
ground error covariance matrix (n � n dimension), H is the operator
that converts the model states to the observation space (p � n
dimension), R is the observation error covariance matrix (p � p
dimension), m is the number of ensemble members, n is the dimen-
sion of model states, and p is the dimension of observations.

In the standard implementation of EnKF, each i of the m ensem-
ble members is updated by Eq. (1). For each ensemble member, the
p dimensional observation yi is sampled from a distribution with
the mean equal to the observation and a variance of R. Burgers
et al. [33] demonstrated that the perturbation of the observation
is actually necessary to provide the correct analysis error
covariance; otherwise, the analysis error covariance will be
underestimated.

To simplify the standard implementation of EnKF, Whitaker and
Hamill [16] proposed another ensemble filtering algorithm called
Ensemble Square-Root-Filter (EnSRF) which does not require the
perturbation of observations. They demonstrated the new algo-
rithm is as fast as EnKF and is more accurate than EnKF for a given
ensemble size. The basic idea of EnSRF is to update model states by
updating the ensemble mean and a deviation from the mean sep-
arately with update equations

xa ¼ xb þ Kðy �HxbÞ
x0ai ¼ x0bi þ ~Kðy0 �Hx0bÞ

ð2Þ

where the overbar denotes the ensemble mean and the prime de-
notes the deviation from the ensemble mean, ~K is the reduced Kal-
man gain identified as

~K ¼ PbHT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HPbHT þ R

q� ��1
" #T

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHPbHT þ RÞ

q
þ

ffiffiffiffi
R
p� ��1

ð3Þ

Note that no perturbed observation is needed in the update
equation (y0 = 0), and K in Eq. (2) is the traditional Kalman gain gi-
ven by Eq. (1b). The ensemble mean and the deviation of the model
states are updated by Eq. (2). The update equation of EnSRF is final-
ly written as

xa
i ¼ xa þ x0ai ð4Þ

Clark et al. [34] used both standard implementation of EnKF and
EnSRF in a distributed hydrologic model. They demonstrated that
the model simulations improved by using the latter approach. In
this study, we used EnSRF instead of the standard implementation
of EnKF, as it has been shown that the algorithm doesn’t lose the
accuracy of analysis-error covariance estimation without the per-
turbation of observations. Detailed algorithm and equations are
shown in Whitaker and Hamill [16, Eqs. (1)–(13)].

2.4. Implementation of EnSRF

A key issue in implementing a data assimilation method is
quantifying the covariance error matrices. For the ensemble Kal-
man filter, variance between multiple ensemble members is used
to quantify the model error. There are a number of possibilities
to generate ensemble members that are related to formulating
the model errors. The easy and robust way is to perturb forcing
data and model states separately, because the model error is the
combination of multiple sources. With this, the physical basis
and interpretation of individual error sources remains clear [19].
In this study, we didn’t perturb the model parameters as recom-
mended by Moradkhani et al. [22], which implied the model error
is attributed to input error and model states estimation error. This
simplification makes a compromise between physical representa-
tiveness and computational efficiency, and has been widely
adopted for real-time data assimilation for streamflow forecasting
[35].

Forcing data uncertainty was emulated by perturbing hourly
rainfall amounts at each time step. As mentioned in van Delft
et al. [23], HyMOD is less sensitive to evapotranspiration compared
to precipitation. So, in this study, evapotranspiration was not per-
turbed. Ensembles of rainfall forcing were generated as [34]:

p0 ¼ pð1þ cpÞ; cp � Nð0;xpÞ ð5Þ

where cp is the random noise with covariance xp, such that cp is a
realization from a normal distribution ranging from �xp to xp.

Model structural uncertainty was simulated by adding noise to
the model state transition equations [22]:

xt ¼Mx ðxt�1;ut; hÞ þ ct ; ct � N ½0;xx� ð6Þ

where xt is a vector of model states at given time t, u is forcing data,
and h is time-invariant model parameters. Random perturbations to
the model states were drawn from zero-mean Gaussian distribu-
tions with heteroscedastic variance of:

xx ¼ ID 0:05ðxt�1Þ ð7Þ

where ID is the D dimension identity matrix. Perturbations were
sampled independently across states and time steps.

The data assimilation approach implicates an assumption of
knowing, or at least accurately estimating, model uncertainty
and observation error; both present challenges. The EnSRF dynam-
ically derives such information by Monte Carlo sampling through
assigned random noise in the forcing data, model structure, and
observation. Crow and Loon [36] pointed out that inaccurate model
error and observation error assumptions would result in deteriora-
tion of forecasting using data assimilation. Thus, experiments need
to be conducted to test the sensitivity of the data assimilation ap-
proach to model uncertainty and observation errors in streamflow
estimation.

One merit of the EnSRF method compared to EnKF is that only
the magnitude of observational uncertainty is needed, and per-
turbing the observations can be omitted. The observation of
streamflow used for updating model states is derived from USGS
observations, with an assumed observation error of g. In this
experiment, we tested the sensitivity of the data assimilation per-
formance to different magnitudes of g and xp. Each assimilation
cycle was repeated twenty times with different values of g and
xp with an ensemble size of 40.

After the appropriate modeling uncertainty and observation
errors were determined, another question in implementing the
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data assimilation method was the proper ensemble size. Ensemble
size represents a balance between sampling error and computa-
tional expense. Effects of varying ensemble size were evaluated
using ensembles from 10 to 80 members at increments of 10. An
appropriate ensemble size is determined when model performance
stabilizes and reaches an asymptote with increasing ensemble size.

Theoretically, a data assimilation method is only useful if a sig-
nificant correlation exists between the model states being updated
and the observations being assimilated. The updating process
might introduce errors and result in a worsening in the accuracy
of the forecasts when the correlation is weak. The HyMOD quick-
flow tanks are hypothesized to have strong correlation with
streamflow observations, but a simulation study is needed to eval-
uate the data assimilation performance by updating different com-
binations of model states. In the experiment, we first quantified the
correlation between all the five model states with streamflow
observations. Then the states were separated into three groups:
soil water tank (S), quick-flow tank (x1,x2,x3), and slow-flow tank
(x4). Each of the model states were updated separately and then
updated in unison.

Observed precipitation data was used as model forcing, with
perturbations applied based on the simple model in Eq. (5). A much
more complex error model would need to be incorporated in the
case of using quantitative precipitation forecasts as model forcing
rather than gauge-based estimates. This would add additional
uncertainty to the forecasts, but the benefit would be longer lead
times for the impending floods. The implementation didn’t involve
additional sources of error to the forcing data, which is particularly
useful for assessing the effect of data assimilation. The benchmark
run was the open loop flood forecasting without using data
assimilation.

To test the performance of data assimilation in flash flood fore-
casting, twelve events from each basin were chosen to be exam-
ined in more detail in this study (see Tables 2 and 3). Among
those twenty-four events in total, most events happened during
the warm season from Jun to Aug, but there were also some
events that happened in spring or fall. The duration of the events
was commonly less than one week. The typical time delay be-
tween precipitation peak and flood peak, or basin response time,
was 6 hours and 3 hours for Cobb Creek watershed and Chuzhou
watershed, respectively. One interesting observation between
the two watersheds was the precipitation in Cobb Creek was more
peaked with less total accumulation compared to that in Chuzhou
watershed. Convective rainfall is more common in Oklahoma,
whereas the rainfall in the Chuzhou basin is of moderate intensity
but longer duration. Hence the data set had large variability,
which was particularly well suited for evaluating whether the
data assimilation approach would actually improve the forecast
of flash floods.
Table 2
Information of the twelve largest flood events on record at the Cobb Creek watershed.

Aug 2007 Jun 2005 Ju

Observed flood peak (m3/s) 210 139 13
Peak time 19 Aug, 11 h 13 Jun, 7 h 14
Precipitation peak time 19 Aug, 5 h 13 Jun, 1 h 14
Precipitation peak (mm/hr) 57 41 54
Precipitation amount (mm) 175 100 13

Apr 2008 May 2008 b Se

Observed flood peak (m3/s) 36 32 30
Peak time 10 Apr, 11 h 8 May, 2 h 15
Precipitation peak time 9 Apr, 17 h 7 May, 19 h 15
Precipitation peak (mm/hr) 12 15 31
Precipitation amount (mm) 65 59 66
2.5. Evaluation criteria

Model assessment consisted of the standard statistical evalua-
tions including percent bias (Bias), mean absolute error in percent-
age (MAE), root mean square error in percentage (RMSE), and
Nash–Sutcliffe coefficient of efficiency (NSCE), which is typically
used in evaluating model performance, as:

NSCE ¼ 1�
Pi2

i¼i1
ðQ i � Q̂ ijÞ

2

Pi2
i¼i1
ðQ � QiÞ

2 ð8Þ

where Q is the observed streamflow, the hat symbol denotes the
estimation of streamflow, i1 and i2 denote the start and end time
of the simulation/forecast, subscript j denotes the forecast lead time
(1 as in simulation mode), and the overbar is the mean value during
the whole simulation/forecast period. In order to evaluate the
improvement of the data assimilation approach more intuitively,
we used an effectiveness criterion (Eff) and a normalized error
reduction index (NER) in this study, as:

Eff ð%Þ ¼ 100 � 1�
Pi2

i¼i1
ðQu

ij � QiÞ
2

Pi2
i¼i1
ðQb

ij � QiÞ
2

0
@

1
A ð9Þ

NERE ð%Þ ¼ 100 � 1� Eu

Eb

� �
ð10Þ

where u and b represent the update after the data assimilation and
benchmark run, respectively. E in Eq. (10) represents the error sta-
tistical index (MAE and RMSE in this study). Both Eff and NER range
between negative infinity and 100%. For Eff, a value larger than 0
corresponds to a positive impact in skill resulting from the data
assimilation. Conversely, a value lower than 0 corresponds to a neg-
ative impact. The greater value of Eff indicates better performance
following data assimilation compared to the benchmark run, and
the ideal value is 100%. For NER, negative values mean the assimila-
tion results in a deterioration compared to the benchmark run. Sim-
ilarly, values of NER closest to 100% indicate a greater improvement
of assimilation relative to the benchmark run.

2.6. Model calibration

HyMOD was first calibrated and validated to provide a bench-
mark performance for assessing the proposed data assimilation re-
sults. The DiffeRential Evolution Adaptive Metropolis (DREAM)
method [37] was used for parameter optimization during the cali-
bration period from Jun 1, 2005 to May 31, 2006 for Cobb Creek
watershed and for 4 flood events on the Chuzhou watershed. The
validation period started from Jun 1, 2006 and ends on Sep 30,
2009 for Cobb Creek watershed and for 12 flood events for
n 2007 May 2008 a Aug 2005 Mar 2008

8 72 50 38
Jun, 14 h 27 May, 13 h 21 Aug, 11 h 18 Mar, 10 h
Jun, 5 h 27 May, 6 h 21 Aug, 3 h 17 Mar 12 h

27 14 8
4 60 115 69

p 2005 Jun 2008 Mar 2007 Aug 2009

29 27 26
Sep, 9 h 9 Jun, 20 h 31 Mar, 4 h 18 Aug, 15 h
Sep, 2 h 9 Jun, 8 h 29 Mar, 11 h 18 May, 10 h

21 13 25
65 65 110



Table 3
Information of the twelve largest flood events on record at the Chuzhou watershed.

Jun 1981 Sep 1981 Aug 1984 Sep 1991 Jun 1994 Aug 1996

Observed flood peak (m3/s) 292 468 377 523 317 236
Peak time 11 Jun, 3 h 22 Sep, 21 h 31 Aug, 2 h 8 Sep, 6 h 15 Jun, 13 h 2 Aug, 21 h
Precipitation peak time 11 Jun, 0 h Sep 22, 18 h 30 Aug, 23 h 7 Sep, 17 h 15 Jun, 9 h 2 Aug, 18 h
Precipitation peak (mm/hr) 29 15 18 13 18 12
Precipitation amount (mm) 123 177 184 275 229 130

Jun 1998 May 1999 Sep 1999 Jul 2001 Jun 2002 Aug 2002

Observed flood peak (m3/s) 222 203 438 714 209 289
Peak time 2 Jun, 8 h 26 May, 5 h 17 Sep, 12 h 7 Jul, 1 h 16 Jun, 12 h 19 Aug, 8 h
Precipitation peak time 2 Jun, 4 h 25 May, 9 h 17 Sep, 9 h 6 Jul, 22 h 16 Jun, 9 h 19 Aug, 5 h
Precipitation peak (mm/hr) 16 15 10 14 12 14
Precipitation amount (mm) 117 157 335 229 204 220
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Chuzhou watershed. Although HyMOD is developed for a recom-
mended time step of daily, in our study basin the typical basin con-
centration time is only several hours. So, in this study the model
was operated at an hourly time step. There was no warm-up period
prior to the calibration period, and all five model states were ini-
tialized to 0 at the beginning. During the validation period, the
model parameters were fixed and the initial states were not reini-
tialized. The parameter ranges and values are provided in Table 4.
The Biases during the calibration period and validation period were
�0.76% and �17.31% for Cobb Creek, and 16.91% and 15.79% for
Chuzhou watershed, respectively. Although the calibration result
was not perfect, considering the simple conceptual model with ba-
sin-averaged forcing and processes, NSCE values greater than 0.7
indicated reasonable performance suitable for data assimilation
experiments.
Fig. 1. Eff space with respect to forcing and observation error with 40 ensemble
members for 20 times run.
3. Results

3.1. Modeling and observation uncertainty experiment

Fig. 1 shows the Eff values with respect to different background
errors in precipitation and streamflow observation errors for a
fixed ensemble size of 40. The precipitation error (xp) and dis-
charge error (g) both range from 2% to 50%. Recall, the goal of this
experiment is to find appropriate values to represent both errors.
The result at each bin in the 2D space represents is a mean value
computed from 20 runs, in order to minimize random sampling er-
rors stemming from a single run. The contour plot clearly shows
that the prescribed errors had a strong impact on the effectiveness
of the assimilation procedure. If the background error of precipita-
tion was larger than 35%, the data assimilation led to worse perfor-
mance than the benchmark run with no assimilation. The
effectiveness of data assimilation showed a diminishing trend with
increasing streamflow observation error, but this trend was not as
Table 4
Calibration and simulation results of the HyMOD.

Parameter Unit Rangea Cobb Creek Chuzhou

Cmax (mm) 1–500 49.1790 64.5150
bexp (–) 0.1–2 0.5535 0.6090
a (–) 0–0.99 0.1599 0.1345
Rq (h) 0.1–0.99 0.3925 0.2378
Rs (h) 0–0.1 1.1287e�5 0.0873

Cobb Creek Chuzhou

Bias (%) NSCE (–) Bias (%) NSCE (–)

Calibration �0.76 0.73 16.91 0.84
Validation �17.31 0.75 15.79 0.74

a The range of the parameters is from Blasone et al. [31].
obvious when the background error was high (>35%). Typically,
standard errors for individual discharge measurements of USGS
gauges have been estimated from about 3–6% for direct measure-
ments [38] and 10% for automated measurements [39]. However,
during peak flows with flooding events, the discharge errors may
be much greater due to uncertainty in the rating curve and addi-
tional problems with automated discharge measurements. Thus,
we selected twelve flood events from Table 2 to further analyze
the impact of discharge observation errors on the effectiveness of
the data assimilation. Table 5 shows statistical results by changing
the discharge error from 5% to 25% with a fixed xp of 20%. This lat-
ter value is associated with a relative maximum in the Eff vales in
Fig. 1. Results indicate that the data assimilation didn’t perform
better by assuming larger errors in the discharge observations for
the flooding cases. Hereafter, the observation errorg of Cobb Creek
watershed was assumed to be 5% according to our results com-
bined with those reported in the literature [38], while that of Chuz-
hou watershed was assumed to 10% according to the simulation
study by Li et al. [29]. The data assimilation result was very sensi-
tive to the assumed error covariance of precipitation, which indi-
cates that it is necessary to identify the appropriate background
error. In this study, we set xp = 20%, which is reasonable for gauge
observations of rainfall (which have their own errors) interpolated
to yield a basin-wide mean.

3.2. Ensemble size experiment

After selecting the appropriate modeling and observation er-
rors, we designed an experiment using data from Cobb Creek wa-
tershed to evaluate the sensitivity of results to varying the
ensemble size. Fig. 2 shows a box plot of the Eff statistics for
streamflow simulations using ensemble sizes from 10 to 80



Table 5
Data assimilation performance with respect to discharge error over peak flow period.

Discharge error Eff (%) NSCE (–)

5% 10% 15% 20% 25% 5% 10% 15% 20% 25%

Flood period Aug-07 67.66 59.53 54.84 47.05 50.69 0.95 0.95 0.94 0.93 0.94
Jun-05 33.11 32.99 27.38 32.48 25.46 0.84 0.84 0.81 0.83 0.79
Jun-07 59.50 45.95 42.37 36.18 29.78 0.85 0.78 0.75 0.73 0.71
May-08 0.37 0.13 0.65 0.47 0.48 0.00 0.00 0.00 0.00 0.00
Aug-05 50.55 30.58 19.30 13.74 20.42 0.72 0.67 0.65 0.62 0.65
Mar-08 11.37 7.11 5.41 11.48 6.81 0.65 0.62 0.60 0.64 0.62
Apr-08 11.44 4.47 8.82 2.27 6.67 0.70 0.66 0.67 0.63 0.66
May-08 1.55 0.12 �3.93 �1.65 �1.55 0.66 0.67 0.69 0.68 0.68
Sep-05 23.93 20.78 16.18 1.43 19.57 0.86 0.86 0.86 0.85 0.86
Jun-08 25.61 18.13 17.84 12.67 9.80 0.65 0.66 0.67 0.68 0.68
Mar-07 22.7 �0.30 7.02 1.09 11.3 0.81 0.79 0.80 0.80 0.81
Aug-09 73.99 64.38 45.04 40.63 45.97 0.57 0.53 0.48 0.47 0.48

Fig. 2. Box plot of Eff with different ensemble members for 20 times run. The black
dots show mean value of the Eff, the borders of the boxes show 25 and 75
percentiles, the long lines in the boxes show the median of the Eff, the whiskers
show the 5 and 95 percentiles, and the triangles show the maximum and minimum
of the Eff.
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members. Mean and median values of Eff were within 20–30% for
all ensemble sizes. However, the spread of the sample was quite
large when the ensemble sizes were less than 40 members. The
spread of the Eff values were approximately equal for ensembles
with more than 40 members. Another factor in the consideration
of ensemble size is the computational requirements. So, in this
study we chose an ensemble size of 50, which is 10 times the
Table 6
Correlation between streamflow observation and model states.

Observation Soil tank Qu

Streamflow S x1

Streamflow 1 0.32 0
S 0.32 1 0
x1 0.27 0.19 1
x2 0.60 0.23 0
x3 0.82 0.25 0
x4 0.027 0.01 �0

Table 7
Statistical results of updating different model states.

Benchmark All states

Bias (%) �14.3 �21.0
MAE (%) 59.0 55.4
RMSE (%) 201.9 164.1
NSCE (–) 0.75 0.79
dimension of the model states as recommended by Zhou et al.
[40] and Pan et al. [41]. This selection ensured the sampling error
was minimized while maintaining acceptable computational speed
for practical considerations.

3.3. Model states updating experiment

Table 6 shows the correlation between the observed streamflow
and model states for the continuous time series of data during the
validation period of Cobb Creek watershed. Strong correlations are
shown between streamflow and quick-flow tanks. The x3 tank con-
ceptually situated closest to the basin outlet had the highest corre-
lation of 0.82, which follows expectations. Observed streamflow
had a correlation of 0.32 with the soil moisture tank, which indi-
cates that the water content stored in the soils also had an influ-
ence basin outflow. Poor correlations were found between the x4

slow-flow tank and streamflow and all other model states, which
indicates x4 was not a sensitive state variable for the time period
considered.

An analysis was conducted to examine the sensitivity of updat-
ing different model states. Five model states were separated into
three groups: S for the soil moisture tank; x1, x2, x3 combined
and denoted hereafter as the quick-flow tank; and x4 as the
slow-flow tank. The entire validation period for the Cobb Creek wa-
tershed was used in this experiment, and statistical results are pre-
sented in Table 7. Compared with the statistical results in the
benchmark run, MAE and RMSE were reduced by updating all
states and the quick-flow tank only, and the NSCE improved from
ick-flow tank Slow-flow tank

x2 x3 x4

.27 0.60 0.82 0.027

.19 0.23 0.25 0.01
0.73 0.41 �0.00

.73 1 0.84 �0.00

.41 0.84 1 �0.00

.00 �0.00 �0.00 1

Soil tank Quick-flow tank Slow-flow tank

�15.0 �16.6 �23.0
58.9 55.2 59.7

198.2 163.4 200.7
0.75 0.79 0.75



Fig. 3. Hydrographs of one-hour-ahead streamflow forecasting at Cobb Creek watershed. (a) – (l) represents each event listed in Table 2.
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0.75 to 0.79. There was little impact by updating the soil tank only,
but the Bias statistic deteriorated from 14.3% to �23% by updating
the slow-flow tank only. No clear evidence indicated that updating
those model states that were only weakly correlated to streamflow
would introduce errors, so we updated all five states simulta-
neously in the experiments hereafter.

3.4. Data assimilation performance experiments in flood forecasting

Figs. 3 and 4 show the one-hour-ahead forecast hydrographs of
the twelve flash flood events listed in Table 2 and Table 3 for the
two study basins. Generally speaking, data assimilation improved
the simulations for most events, especially for the forecast of the
peak flow magnitude. HyMOD had better skill on Cobb Creek com-
pared with the Chuzhou watershed. But, after data assimilation,
the Chuzhou watershed had a great improvement in forecasting
the peak flow and simulating the entire hydrograph. Simulations
on Cobb Creek had improvements in the flood peak after data
assimilation, but there were some errors in simulating the entire
hydrograph, especially for the recession period. The reason was be-
cause the duration of rainfall in Cobb Creek was much shorter than
that in Chuzhou watershed. This didn’t permit enough time to
appropriately perturb the precipitation of the ensemble members,
which was a particularity of the specific algorithm used for data
assimilation. Although the model states were perturbed by adding
random noise, we noted that the model state of soil water content
dropped to 0 just a few hours after the flood peak. Thus, the data
assimilation approach had a positive effect in the rising limbs in
the hydrographs in Cobb Creek, but didn’t have much effect during
the recession periods. Considering all events, the data assimilation



Fig. 4. Hydrographs of one-hour-ahead streamflow forecasting at Chuzhou watershed. (a) – (l) represents each event listed in Table 3.
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approach had the most significant improvement with the events
caused by rainfall with longer duration. Nonetheless, flood peaks
and peak times were improved even for the flash floods, which is
of great importance in flood early warning.

We noted that the model performed relatively poorly for dou-
ble-peaked events. The peakflow and the overall hydrograph were
frequently overestimated for the second peak (Figs. 3(e) and (l) and
4(c)). Moreover, the impact of the state updating was minimal. The
reason for this was because when the second band of precipitation
fell, the water in the routing tanks hadn’t been totally released, so
the runoff from the soil tank was accumulated in the second flood
peak. This problem might be attributed to the simplified structure
of the model, but the data assimilation approach could correct the
results to some extent. In this example, the advantage of updating
during the high flow period was obvious. However, the effective-
ness of data assimilation was still limited because it could not
change the model structure nor the model states beyond reason-
able ranges, else there would be an imbalance in the total water
amount in the soil water or routing tanks.

In real operations, a one-hour-ahead forecast is typically insuffi-
cient for early warning, so it is important to analyze the feasibility of
data assimilation in the flood forecasting at longer lead times. Here,
we tested the ability of the updating procedure to improve the fore-
cast of the flood peaks listed in Tables 2 and 3. A 3-hour-ahead fore-
cast was considered given the small sizes and quick responses of the
basins, which meant that the data assimilation approach was imple-
mented 3 hours before the flood peak occurred. The results of the
comparison over both watersheds are shown in Figs. 5 and 6. For
Cobb Creek, the flood peaks were improved in ten out of twelve of
the flood events. One of the weaker events was slightly deteriorated



Fig. 5. Comparison of the 3 h-ahead forecast of the flood peaks with and without
update for the twelve largest flood events at Cobb Creek watershed on record as of
Table 2.

Fig. 6. Comparison of the 3 h-ahead forecast of the flood peaks with and without
update for the twelve largest flood events at Chuzhou watershed on record as of
Table 3.
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for the flood peak, which had an observed value of 36 m3 s�1,
42 m3 s�1 with the state updates, and 40 m3 s�1 without them. For
the twelve events on Cobb Creek in Fig. 5, the mean MAE of the peaks
was 43% for the benchmark run, which decreased to 32% following
the state updates. For the Chuzhou watershed, however, the flood
peaks were overestimated by approximately 60% for the benchmark
run (Fig. 6), which indicates that the calibrated model had difficulty
in capturing the flood peaks in this small, mountainous watershed.
However, following data assimilation, all twelve flood events re-
vealed an improvement in flood peak forecasting, with a Bias of
42%. All twelve events were better forecast following data assimila-
tion. It is obvious that the data assimilation approach has significant
merits in terms of forecasting flood peaks with a 3-hour lead time.

The forecast accuracy for a series of lead times was evaluated
for all flood events on both study basins. Four error measures, nor-
malized error reduction (NER) of MAE and RMSE, NSCE, and Eff,
were all considered. The results of the evaluation metrics are plot-
ted as a function of forecast lead time in Figs. 7 and 8 for Cobb
Creek and Chuzhou watershed, respectively. Each box incorporates
all twelve events in order to show the general performance of the
data assimilation approach. The results show similar patterns for
all four metrics on Cobb Creek (Fig. 7). In general, the data assim-
ilation approach had a positive impact on the forecast of peak flows
for lead times less than 6 hour. The impact of data assimilation de-
creased with longer lead times. This result was understandable be-
cause the typical flow routing time in this watershed was
approximately 6 hour. If the lead time exceeds the basin concen-
tration time, then the state updating had already been completed
before the rainfall. Adjustments at these long lead times were quite
minor and ineffective because the update excluded the perturba-
tions to precipitation, the largest uncertainty in the streamflow
forecast. In this case, the data assimilation approach had little ef-
fect on the streamflow forecast. For the Chuzhou watershed, the
data assimilation approach had a definite positive impact on
flood-event forecasting for a broader range of lead times. The dif-
ferent performance between Cobb Creek watershed and Chuzhou
watershed is primarily attributed to the differences in the precipi-
tation processes and geomorphologies in the two watersheds. First,
the rainfall in Cobb Creek was commonly from short-duration, in-
tense convective thunderstorms, while that in Chuzhou watershed
was mostly moderate rainfall with long duration. Thus, the ensem-
bles in Cobb Creek offered shorter durations and thus less opportu-
nity to get fully perturbed. Another reason was that the
mechanism of runoff generation was different in the two water-
sheds. Intense storms in Cobb Creek caused infiltration excess run-
off while that in Chuzhou watershed was more saturation excess.
This latter mechanism is better conceptualized in the HyMOD
structure, more so than the former, which provides some explana-
tion as to the effectiveness of data assimilation in the in Chuzhou
watershed.

To further illustrate the impact of data assimilation with lead
time, we selected the largest flood event on record in Table 2
(Aug 2007). Fig. 9 shows forecast hydrographs at different lead
times as well as the observed streamflow and benchmark simula-
tion. For one-hour-ahead forecasting, the forecast after updating
performed very well. Both the hydrograph and the peak of the
flood were close to the observation. The 3-hour-ahead forecast
had less effect compared to the one-hour lead, but still improves
upon the result compared with the benchmark run. The forecast
with the 6-hour lead time shows little difference compared to
the benchmark run, which means that the data assimilation ap-
proach has little effect when the lead time is longer than the basin
concentration time.
4. Discussion

Real-time flood forecasting remains a challenging problem in
hydrology, especially for flash flooding events over small water-
sheds. In gauged basins, data assimilation provides a potential tool
to handle different sources of uncertainty, which are inevitable in
forcing data, model structures, parameters and observations. In
this study, we applied the EnSRF approach into HyMOD to test
the effectiveness of the state-updating procedure in flood forecast-
ing. As a variant of the standard implementation of the EnKF meth-
od, the EnSRF method avoids systematic underestimation of the
posterior covariance, which leads to the use of perturbed observa-
tions in the EnKF method [16], and the feasibility in streamflow
simulations has been tested in a distributed hydrologic model
[34]. In former sections, the applicability of the EnSRF method
was demonstrated through testing the state-updating procedure
for flood forecasting.



Fig. 7. Box plot of forecast evaluation with different lead time for the twelve largest flood events at Cobb Creek watershed on record of Table 2. (a) Normalized error reduction
(NER) of MAE; (b) NER of RMSE; (c) difference of NSCE between update run and benchmark run; (d) Eff of the data assimilation.
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The most crucial part in applying the filter on actual events is to
get a good estimate of the model errors, since less accurate esti-
mates of the model errors will lead to a suboptimal estimation of
the model states. The method for estimating model error in this
study was similar to those used in other studies (e.g. [19],[34]),
which separated the model error into different error terms of forc-
ing data, model states, and the observations of system behavior.
To further investigate the assimilation performance with respect
to model error, the effectiveness of state updating was examined
for a range of forcing and observation perturbations. Results showed
that the effectiveness of data assimilation was more sensitive to the
rainfall-forcing perturbation than the observation of streamflow,
implying that accurate streamflow simulation using HyMOD was
highly dependent on the accuracy and the uncertainty estimation
of the rainfall forcing. Moradkhani et al. [22] performed a similar
analysis with a different evaluation criterion of Normalized RMSE
Ratio (NRR), but their results showed that NRR was more sensitive
to the observation perturbations. This conflicting result indicated
that a rigorous systematic sensitivity analysis to quantify the forc-
ing and observation perturbation factors was needed, since their
impact on data assimilation performance might depend on the
hydrologic model used and the characteristics of the studied basin.

The EnSRF method outperformed the benchmark run for fore-
casting the general hydrographs of the floods, but its effectiveness
remained limited. One reason was the simplified treatment of the
water distribution in the soil tank represented within HyMOD.
After the flood peak occurred, the water storage in the soil tank
quickly and unrealistically reduced to zero due to evapotranspira-
tion, and if no rainfall occurred during the low flow period, the
water storage remained at zero. Thus, the ensemble generated by
the data assimilation method had little spread because no pertur-
bations were applied to the precipitation or soil moisture. Another
reason was the time lag between model states and streamflow. In
this study, the state update was based on an instantaneous obser-
vation of streamflow, but the simulated streamflow was affected
by the soil water storage a couple of hours prior. So the model state
of the soil tank was insensitive to the updating procedure, espe-
cially during low flow periods. The assimilation of soil moisture
data is necessary to obtain a better updated model state of the
hydrologic model [42]. As the objective of the paper is dedicated
to flood forecasting, the soil moisture data was not coupled to
the assimilation of streamflow, and the assimilation technique
was proven to be well adapted in the context of flood forecasting
in gauged basins.

Unlike flood events in large-scale river basins, a distinguishing
characteristic of floods in small-scale watersheds is their quick
but potentially intense and catastrophic responses to rainfall forc-
ing. As stated above, the modeled soil water content in HyMOD be-
fore the rising limb was found to be approximately zero, which
means the streamflow simulation was insensitive to the initial soil
moisture states. Therefore, the soil moisture state initialization im-
proved by the data assimilation system has no appreciable effect
on flood forecasting. However, this finding is very likely specific
to the simplified structure of HyMOD and perhaps to the small ba-
sin sizes studied here. Effectiveness of assimilating soil moisture
data on flood responses should be evaluated more comprehen-
sively using more complex model structures across basins with dif-
ferent scales and geomorphological characteristics.



Fig. 8. Box plot of forecast evaluation with different lead time for the twelve largest flood events at Chuzhou watershed on record of Table 3. (a) Normalized error reduction
(NER) of MAE; (b) NER of RMSE; (c) difference of NSCE between update run and benchmark run; (d) Eff of the data assimilation.

Fig. 9. Precipitation (reversed bars) and streamflow simulations of benchmark runs
(black solid line) and forecast of update runs with the lead time of 1-h (black dash
line), 3-h (gray solid line), and 6-h (gray dash line) compared with observations
(gray shadows) of the largest event on record of Table 2 (Aug 2007).
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5. Conclusions

The objectives of the study were to evaluate the feasibility of a
data assimilation system for real-time flash flood forecasting over
small watersheds, and to examine the applicability of the EnSRF
method for updating model states. The following conclusions were
reached in this study:
(1) The sensitivity analysis indicated that the effectiveness of
data assimilation is more sensitive to the prescribed back-
ground error of the precipitation forcing than the observa-
tional error. If the precipitation error was assumed to be
greater than 35%, then the data assimilation method was
ineffective. More importantly, both errors should be set to
a reasonable range, which was found to be 5% for streamflow
observations and 20% for basin-averaged, gauge-based rain-
fall forcing. These results are based on the sensitivity analy-
sis and instrument and sampling considerations. If these
errors are not properly accounted for, then the hydrologic
simulation may be deteriorated following data assimilation.

(2) The ensemble size experiment results showed the data
assimilation performance was suboptimal until the ensem-
ble size reached 50 members (10 times of the dimension of
the model states). Once the ensemble size is sufficient to
average out the sampling errors, increasing ensemble mem-
bers didn’t have much of a difference in the data assimilation
results, and only increased the computational expense.

(3) The model states-updating experiment results showed strong
correlations between streamflow and quick-flow tanks, but
poor correlations between streamflow and the slow-flow
tank. However, updating the poorly correlated slow-flow tank
didn’t introduce extra errors to the streamflow simulation.

(4) The assimilation of streamflow for flash flood forecasting reduced
forecast errors in both flood peak and the hydrograph at both
study watersheds. The degree of improvement was limited for
Cobb Creek due to the prevalence of short-duration, high-inten-
sity rainfall from convective storms. Also, the improvements
decreased with increasing forecast lead time. When the lead time
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exceeded the flow routing time of the basin, the data assimilation
approach didn’t provide any improvements to the streamflow
forecast and represents a physical limit.

This study demonstrated that the proposed EnSRF data assimi-
lation technique based on the ensemble Kalman filter concept was
suitable to the context of streamflow forecasting even for individ-
ual, flash flood events at small watersheds. Although the benefits
and efficiency of implementing the EnSRF approach into a concep-
tual hydrologic model were demonstrated in this study on two
small basins, there is a great potential for its use in a real-time flash
flood warning system. Future work will evaluate the effectiveness
of data assimilation in flood forecasting when considering model
resolution, data availability, remotely-sensed input data, and spa-
tially distributed hydrologic models with various complexity.
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